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Goal

We seek to produce accurate simulations of disease transmission dynamics using regional mobility
data. We use probabilistic programming to fit the parameters of these simulations to real world
epidemiological data. These simulations can help policy makers and epidemiologists design intervention
strategies for pandemics.

Our Results

We construct a region-specific disease simulation model that is capable of reproducing local transmission
dynamics more accurately than baseline models and closely matches historical infection data from that
region. To achieve this, we:
I Build mobility networks to represent individual counties by fitting a degree-corrected stochastic

block model to cellphone GPS data from that region.
I Implement an agent-based model, Network-SEIR, with SEIR-like disease state dynamics to

simulate the spread of disease in these mobility networks.
I Use probabilistic programming and condition our model on regional infection counts in order to

calibrate the parameters of our disease model for a given county.

Constructing Mobility Networks

We construct regional mobility graphs using anonymized cell-phone GPS data obtained from SafeGraph.
This data assigns phones to a home census block group (CBG), and tracks their visits to points of interest
(POIs). We fit a degree-corrected stochastic block model (DCSBM) to the original county data. The
probability of forming an edge between two CBGs is proportional to the number of shared visits to POIs.
We set the edge weight between two CBGs based on the length of overlap during shared visits to POIs.

Compartmental and Network Disease Simulation

Traditional SEIR models use aggregated disease compartments and simple ordinary differential equations
describing the dynamics between compartments.

We design a stochastic network-SEIR model to capture the effect of social and mobility networks on
transmission rates, as well as variation due to regional policies, public health differences, and changes in
disease properties.

Our model is parametrized by: (1) a regional graph G, (2) initial exposure rate α for each community
1 . . . C, (3) K control points for time-varying disease parameters (βE controls how exposed individuals
transmit; βI controls how infected individuals transmit), (4) dwell probabilities γ for the exposed state
and λ for the infectious state, and (5) simulation duration T .

Each simulation produces an estimate of cumulative counts of infected individuals at each day.
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Stochastic Disease Simulator

Function fSEIR(G = (V ,W ), ρ, βE, βI, γ, λ, τ , T) :
for c← 1 to C do // Initial exposure
for v ∈ Vc do if Uniform(0, 1) < ρc then v → E1 else v → S1

for t← 1, . . . , T−1 do // Simulate T days
βEt ← interpolate

(
(τ1, βE1 ), . . . , (τN , βEN )

)
; βIt ← interpolate

(
(τ1, βI1 ), . . . , (τN , βIN )

)
)

for v ∈ St do // New exposures
Epressure←

∑
u∈NE

t (v)Wuvβ
E
t ; Ipressure←

∑
u∈NI

t (v)Wuvβ
I
t

if Uniform(0, 1) < 1− exp(−Epressure − Ipressure) then v → Et+1
for v ∈ Et do if Uniform(0, 1) < γ then v → It+1 // Symptoms begin
for v ∈ It do if Uniform(0, 1) < λ then v → Rt+1 // Infection ends

return
{∑j

t=1 |It|
}T
j=1 // List of Cumulative Infections

Stochastic Variational Inference

We seek to learn a posterior distribution over disease transmission parameters for our disease simulator
given observed infection data p(β|data). Computing this posterior directly is intractable because it would
require a high-dimensional integral with respect to all latent variables of the model.

Instead, we define a variational distribution qφ(α, βE, βI , γ, λ) which approximates this posterior, and try
to minimize the KL divergence between q and p. We achieve this by optimizing a surrogate ELBO objective
as a function of the parameters of q.

By performing stochastic gradient ascent on the ELBO objective, we obtain locally optimal parameters φ
for our variational distribution. Specifically we use Black Box Variational Inference as implemented in the
Gen probabilistic programming package [4, 3, 1].

Validation on Simulated Data

Mean Daily Absolute Error (MDAE). We compare model outputs to true data by summing the
area between curves, normalizing for time range and population size.

MDAE ≡ Eqφ(z)
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Our Method Recovers Parameters for Simulated Data. We perform inference using simulated
infection counts with 6 different time-varying patterns for βtE such as low-high-low. Synthetic data comes
from our disease simulator using fixed disease parameters. Then, we run our inference procedure and
compare disease trajectories from our learned variational distribution to the trajectories using the ground
truth disease hyperparameters.

Figure: Validation on a simulated model on Miami-Dade topology. Generated disease trajectory using “high-low-high”
βE = 0.45, 0.1, 0.45 (left) and “low-high-low” βE = 0.1, 0.45, 0.1 (right).

Table: MDAE for different counties and disease dynamics.

County low high low-high high-low low-high-low high-low-high
Miami-Dade 0.0052 0.0046 0.0042 0.0051 0.0043 0.0050
Los Angeles 0.0037 0.0046 0.0050 0.0044 0.0048 0.0047

Fitting Parameters in Different Regions

We apply our method to Los Angeles, CA and Miami-Dade, FL. We fit parameters for Network-SEIR
by conditioning on the reported cumulative infection counts. Our method fits observed data better (in
MDAE) than several alternative baselines: (1) Compartmental CE-EM: a compartmental SEIR model
with parameters fit using CE-EM [2], and (2) Network Rt-Analytic: a simplified analytic solution for fSEIR
parameters, (3) Metropolis-Hastings: a standard inference strategy based on MCMC, and (4) Likelihood
Weighting in which samples the prior are re-weighted according to their likelihood.

Disease Model Fitting Method Los Angeles Miami-Dade Middlesex
Compartmental SEIR CE-EM 0.0127 0.0217 0.0080

Network SEIR Rt-analytic 0.0103 0.0367 0.0021
Network SEIR Metropolis Hastings 0.0124 0.0134 0.0076
Network SEIR Likelihood Weighting 0.0066 0.0090 0.0056
Network SEIR BBVI 0.0011 0.0036 0.0012

Table: Comparison of the MDAE of different disease models and fitting methods.

Figure: Inference for Los Angeles using baseline methods. Model vs. true cumulative infections shown for (left)
Compartmental CE-EM (right) Network Rt-Analytic.

Figure: Inference for Los Angeles: (left) model vs. true cumulative infections; (right) daily SEIR counts output from the fit
model. Note that multiple peaks are clearly visible.

Inferring Starting Communities

Our variational distribution includes a mean proportion of initial exposure in each community c. Learned
values for these means µcα indicate which communities were likely to have higher initial exposure given the
observed disease data. For higher observational noise ν, the inferred parameters are closer to the uniform
prior µcα = .05, whereas for low observation noise, we find an initial exposure in communities 1, 9, 10, 13 is
more consistent with the observed daily cumulative infection data.

Figure: The network topology of Miami-Dade county is modeled using 15 communities which correspond to actual
geographic areas. We plot µcα for 1 ≤ c ≤ 15. We use observational noise ν = 2.5 · 10−4 (left) and ν = 5 · 10−4 (right).
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