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Abstract

We frame the problem of subject transfer learning as a constrained optimization problem in which we
seek to learn an encoder model that minimizes classification loss, subject to a constraint on independence
between the latent representation and the subject label.

• We propose a new framework called “AutoTransfer” for automatically performing transfer learning
on new datasets.

• AutoTransfer achieved 1st place in subject-transfer task at BEETL AI challenge [1].

• We introduce three notions of independence which we call “censoring modes” to derive
subject-invariant objective functions: (1) Marginal independence: z ⊥ s; (2) Class-conditional
independence: z ⊥ s | y; and (3) Complementary independence: z1 ⊥ s and max I(z2; s).

• For each censoring mode, we enforce these independence constraints using two penalties: mutual
information or divergence (See Tab. 1).

• We provide a total of 15 censoring algorithms in the form of neural critic functions as well as
analytic function approximations (See Tab. 2).

• We perform extensive experimentation, hyperparameter tuning, and model ensembling, showing
superior performance in subject transfer learning on a variety of EEG, EMG, and ECoG datasets.

Censoring Objectives
• Subject-Invariant Inference: Consider a classification problem with data x, task labels y, and
subject labels s. We train an encoder model z = fθ(x) and a classifier model ŷ = gϕ(z) by adding a
regularization term alongside the standard cross entropy loss:

(θ∗, ϕ∗) = argmin
θ,ϕ

Ltask + λLcensor (1)

• Censoring Modes: Here Ltask is the main task loss and Lcensor is a regularization term in the form
of a mutual information penalty or a divergence penalty. The regularization term enforces
marginal independence (z ⊥ s), conditional independence (z ⊥ s | y), or complementary
independence (z1 ⊥ s and max I(z2; s)).

Table 1: High-level censoring penalties considered

Censoring Mode Mutual Information Divergence
Marginal I(z; s) D(qθ(z)||qθ(z|s))

Conditional I(z; s|y) D(qθ(z|y)||qθ(z|s, y))
Complementary I(z1; s)− I(z2; s) D(qθ(z1)||qθ(z1|s))−D(qθ(z2)||qθ(z2|s))

• Censoring Methods: We consider various estimation methods for each censoring penalty:

Table 2: Censoring penalties and estimation methods

Penalty Estimation Methods
Mutual Information MIGE [2], Adversary [3]

Divergence MMD/Pairwise MMD [4], BEGAN Disc [5]

• Problem: This framework results in a large set of combinatorial possibilities to apply in
regularization terms. Because of no free-lunch theorem, there is no single algorithm performing
best across all datasets.

• Solution: Our proposed AutoTransfer methods explores these censoring algorithms without manual
trial-and-error, and selects the best settings according to performance on an unseen validation
subject.
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AutoTransfer Pipeline

Figure 1: AutoTransfer pipeline for subject-invariant feature censoring in pre-shot transfer learning.

• Subject s produces data x, which is mapped by encoder fθ to latent code z, and fed into gϕ to
produce estimated class probabilities ŷ, giving task loss Ltask.

• Various censoring models αψ compute regularization penalty Lcensor to enforce independence.

• Multiple subjects s1, s2 are encoded, and the penalty from αψ gradually changes the latent feature
distribution during training.

• Different censoring algorithms having different strength of regularization are automatically explored
to provide sufficient regularization without causing collapse.

Example Censoring Algorithms

Algorithm 1: Marginal MIGE Censoring
Input: Batch {(xi, yi, si)}Ni=1, Encoder fθ,

No. nuisance values M , Score
estimator Fscore

Output: Gradient of MI
Subroutine Est∇H(vectors {zi}Ni=1) :
∇θH ← 0 ; fit Fscore to {zi}
for i in 1 . . . N do
r ← Fscore(zi) // Eval Score

add r · ∇θzi to ∇θH

return ∇θH

for i in 1 . . . N do
zi← fθ(xi)

∇θH(z)← Est∇H({zi})
for m in 1 . . .M do
Sm← {zi : si = m}
add 1

M ·|Sm| Est∇H(Sm) to ∇θH(z|s)
return ∇θH(z)−∇θH(z|s)

Algorithm 2: Conditional Censoring using BE-
GAN Discriminator
Input: Batch {(xi, yi, si)}Ni=1, Encoder fθ,

No. nuisance values M , No. classes C,
Prev. control trade-off kprev ∈ [0, 1],
Control LR β

Output: Encoder’s divergence penalty,
Discriminator’s objective, Next
control trade-off value

for i in 1 . . . N do
zi← fθ(xi)

Lp(z|y)← 0 ; Lp(z|s,y)← 0
for c in 1 . . . C do
add LD(zi : yi = c) to Lp(z|y)
for r in 1 . . .M do
add LD(zi : si = r, yi = c)/M to Lp(z|s,y)

LDisc← Lp(z|y) − kprev · Lp(z|s,y)
LEnc← Lp(z|s,y)
knext← kprev + β · (0.5 · Lp(z|y) − Lp(z|s,y))
return LEnc, LDisc, clip(knext, 0, 1)

Algorithm 3: Complementary Adversarial Cen-
soring
Input: Batch {(xi, yi, si)}Ni=1, Encoder fθ,

Adversarial Classifier αψ
Output: Mutual Information penalty
Ltotal← 0
for i in 1 . . . N do
// Split latent representation

(z1i , z
2
i )← fθ(xi)

// Predict subj from each half

qψ(si|z1i , yi)← αψ(z
1
i , yi)

qψ(si|z2i , yi)← αψ(z
2
i , yi)

add LCE(qψ(si|z1i ), si) to Ltotal

subtract LCE(qψ(si|z2i ), si) from Ltotal

return Ltotal

Experimental Setting

Our censoring objectives can be combined with other standard deep learning techniques.

• We experiment with various Continuous Wavelet Transforms (CWT) [6] for preprocessing.

• We use ResNet18 [7] encoder model pretrained on image datasets.

• For new datasets, AutoTransfer tunes hyperparams over balanced accuracy on held-out subject.

• For the top 3 settings of each censoring method, we run leave-subject-out cross-validation (CV).

• In each fold, we reserve 1 validation and 1 test subject.

Results
• We evaluate our approach on diverse neurophysiological datasets: EEG Rapid Serial Visual
Presentation (RSVP) event-related potentials [8], Error Potentials (ErrP) [9]; EMG American Sign
Language (ASL) [10]; and ECoG facial recognition task [11].

• We verified that censoring can improve subject transfer performance across varied datasets.

• The ideal censoring mode and method is dataset dependent.

• Improvements are especially pronounced for subjects whose naive transfer performance is lower.

• AutoTransfer ranked 1st place in cross-subject transfer task 1 of NeurIPS BEETL AI challenge.

Figure 2: Subject transfer balanced accuracy. Left: Test score from each CV fold, black line indicates mean. Right: Accuracy
vs test subject, sorted by baseline performance. Color coding matches for left and right.

Table 3: BEETL Task 1 Results: Sleep Stage Classification

Competition Stage Censoring Method Score (gap to competitor)
Leaderboard Testing Baseline 68.22 (−3.92)
Leaderboard Testing Marginal Adv 67.65 (−4.49)
Leaderboard Testing Marginal PairMMD 65.68 (−6.46)
Leaderboard Testing Marginal MIGE 66.81 (−5.33)

Final Testing Baseline 68.69 (+0.03)
Final Testing Conditional MIGE 67.23 (−1.43)
Final Testing Complementary BEGAN Disc 68.41 (−0.25)
Final Testing Conditional MMD 69.23 (+0.57)
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