

AutoTransfer: Automated Subject Transfer Learning with Censored Representations on Biosignals Data

Niklas Smedemark-Margulies⁽¹⁾, Ye Wang⁽²⁾, Toshiaki Koike-Akino⁽²⁾, Deniz Erdogmus⁽³⁾ ⁽¹⁾Khoury College of Computer Science, Northeastern University, Boston, MA 02115, USA. ⁽²⁾Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA.

Abstract

We frame the problem of subject transfer learning as a constrained optimization problem in which we seek to learn an encoder model that minimizes classification loss, subject to a constraint on independence between the latent representation and the subject label.

- We propose a new framework called "AutoTransfer" for automatically performing transfer learning on new datasets.
- AutoTransfer achieved **1st place** in subject-transfer task at BEETL AI challenge [1].
- We introduce three notions of independence which we call "censoring modes" to derive subject-invariant objective functions: (1) Marginal independence: $z \perp s$; (2) Class-conditional independence: $z \perp s \mid y$; and (3) Complementary independence: $z_1 \perp s$ and $\max I(z_2; s)$.
- For each censoring mode, we enforce these independence constraints using two penalties: mutual information or divergence (See Tab. 1).
- We provide a total of 15 censoring algorithms in the form of neural critic functions as well as analytic function approximations (See Tab. 2).
- We perform extensive experimentation, hyperparameter tuning, and model ensembling, showing superior performance in subject transfer learning on a variety of EEG, EMG, and ECoG datasets.

Censoring Objectives

• (

• **Subject-Invariant Inference**: Consider a classification problem with data x, task labels y, and subject labels s. We train an encoder model $z = f_{\theta}(x)$ and a classifier model $\hat{y} = g_{\phi}(z)$ by adding a regularization term alongside the standard cross entropy loss:

$$(\theta^*, \phi^*) = \operatorname*{arg\,min}_{\theta, \phi} \mathcal{L}_{\mathrm{task}} + \lambda \mathcal{L}_{\mathrm{censor}}$$

• Censoring Modes: Here \mathcal{L}_{task} is the main task loss and \mathcal{L}_{censor} is a regularization term in the form of a **mutual information** penalty or a **divergence** penalty. The regularization term enforces **marginal** independence $(z \perp s)$, **conditional** independence $(z \perp s \mid y)$, or **complementary** independence $(z_1 \perp s \text{ and } \max I(z_2; s))$.

Table 1: High-level censoring penalties considered

		0	01		
Censo	ring Mode	Mutual Information	Dive	rgence	
Μ	arginal	I(z;s)	$\mathcal{D}(q_{ heta}(z))$	$ q_{ heta}(z s)) $	
Cor	nditional	I(z;s y)	$\mathcal{D}(q_{ heta}(z y)$	$ q_{\theta}(z s,y)\rangle$	
Comp	lementary	$I(z_1;s) - I(z_2;s)$	$\mathcal{D}(q_{ heta}(z_1) q_{ heta}(z_1 s))$	$- \mathcal{D}(q_{ heta}(z_2))$	
Censoring Methods: We consider various estimation methods for each censo					
			1. · · · · · ·		

Table 2: Censoring penalties and estimation methods **Estimation Methods** Penalty

MIGE [2], Adversary [3] Mutual Information MMD/Pairwise MMD [4], BEGAN Disc [5] Divergence

- **Problem**: This framework results in a large set of combinatorial possibilities to apply in regularization terms. Because of **no free-lunch theorem**, there is no single algorithm performing best across all datasets.
- Solution: Our proposed AutoTransfer methods explores these censoring algorithms without manual trial-and-error, and selects the best settings according to performance on an unseen validation subject.

Re	ferences
[1]	NeurIPS 2021 BEETL Competition: Benchmarks for EEG Transfer Learning. https://beetl.ai.
[2]	Liangjian Wen et al. "Mutual information gradient estimation for representation learning". In: arXiv preprint arXiv:2005.01123 (2020)
[3]	Ozan Özdenizci et al. "Learning invariant representations from EEG via adversarial inference". In: IEEE access 8 (2020), pp. 27074- 2020.2971600.
[4]	Arthur Gretton et al. "A kernel two-sample test". In: The Journal of Machine Learning Research 13.1 (2012), pp. 723–773.
[5]	David Berthelot, Thomas Schumm, and Luke Metz. "BEGAN: Boundary equilibrium generative adversarial networks". In: arXiv prepr
[6]	Gregory Lee et al. "PyWavelets: A Python package for wavelet analysis". In: Journal of Open Source Software 4.36 (2019), p. 1237.
[7]	Kaiming He et al. "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and patter
[8]	RSVP EEG Dataset. https://repository.library.northeastern.edu/collections/neu:gm80jm78x.
[9]	Perrin Margaux et al. "Objective and subjective evaluation of online error correction during P300-based spelling". In: Advances in H (2012).
[10]	American Sign Language EMG Dataset. Non-public data, taken with permission from Northeastern University Movement Neuroscience

[11] Kai J Miller. "A library of human electrocorticographic data and analyses". In: Nature human behaviour 3.11 (2019), pp. 1225–1235.

 $||q_{ heta}(z_2|s))|$ oring penalty:

4-27085. DOI: 10.1109/ACCESS

orint arXiv:1703.10717 (2017).

ern recognition. 2016, pp. 770–778.

Human-Computer Interaction 2012

nce Lab.

- produce estimated class probabilities \hat{y} , giving task loss \mathcal{L}_{task} .
- Various censoring models α_{ψ} compute regularization penalty \mathcal{L}_{censor} to enforce independence.
- Multiple subjects s_1, s_2 are encoded, and the penalty from α_{ψ} gradually changes the latent feature distribution during training.
- Different censoring algorithms having different strength of regularization are automatically explored to provide sufficient regularization without causing collapse.

Example Censoring Algorithms

Algorithm 1: Marginal MIGE Censoring **Input:** Batch $\{(x_i, y_i, s_i)\}_{i=1}^N$, Encoder f_{θ} No. nuisance values M, Score estimator F_{score} **Output:** Gradient of MI Subroutine $Est_{\nabla H}$ (vectors $\{z_i\}_{i=1}^N$): $\nabla_{\theta} H \leftarrow 0$; fit F_{score} to $\{z_i\}$ for i in $1 \dots N$ do $r \leftarrow F_{score}(z_i)$ // Eval Score add $r \cdot \nabla_{\theta} z_i$ to $\nabla_{\theta} H$ return $\nabla_{\theta} H$ for i in $1 \dots N$ do $|z_i \leftarrow f_{\theta}(x_i)|$

 $\nabla_{\theta} H(z) \leftarrow Est_{\nabla H}(\{z_i\})$ for m in $1 \dots M$ do $|\mathcal{S}_m \leftarrow \{z_i : s_i = m\}$ add $rac{1}{M \cdot |\mathcal{S}_m|} Est_{
abla H}(\mathcal{S}_m)$ to $abla_{ heta} H(z|s)$ return $\nabla_{\theta} H(z) - \nabla_{\theta} H(z|s)$

Algorithm 2: Conditional Censoring u GAN Discriminator **Input:** Batch $\{(x_i, y_i, s_i)\}_{i=1}^N$, Encode No. nuisance values M, No. cla Prev. control trade-off $k_{prev} \in$ Control LR β **Output:** Encoder's divergence penalty Discriminator's objective, Nex control trade-off value for i in $1 \dots N$ do $z_i \leftarrow f_{\theta}(x_i)$ $\mathcal{L}_{p(z|y)} \leftarrow 0$; $\mathcal{L}_{p(z|s,y)} \leftarrow 0$ for c in $1 \dots C$ do | add $\mathcal{L}^D(z_i:y_i=c)$ to $\mathcal{L}_{p(z|y)}$ for r in $1 \dots M$ do | add $\mathcal{L}^D(z_i:s_i=r,y_i=c)/M$ to \mathcal{L}_i $\mathcal{L}_{\text{Disc}} \leftarrow \mathcal{L}_{p(z|y)} - k_{prev} \cdot \mathcal{L}_{p(z|s,y)}$ $\mathcal{L}_{\text{Enc}} \leftarrow \mathcal{L}_{p(z|s,y)}$ $k_{next} \leftarrow k_{prev} + \beta \cdot (0.5 \cdot \mathcal{L}_{p(z|y)} - \mathcal{L}_{p(z|y)})$ return \mathcal{L}_{Enc} , \mathcal{L}_{Disc} , clip $(k_{next}, 0, 1)$

Experimental Setting

Our censoring objectives can be combined with other standard deep learning techniques. • We experiment with various Continuous Wavelet Transforms (CWT) [6] for preprocessing. • We use ResNet18 [7] encoder model pretrained on image datasets.

- For new datasets, AutoTransfer tunes hyperparams over balanced accuracy on held-out subject.
- For the top 3 settings of each censoring method, we run leave-subject-out cross-validation (CV).
- In each fold, we reserve 1 validation and 1 test subject.

⁽³⁾College of Engineering, Northeastern University, Boston, MA 02115, USA.

Results

sing BE-					
r $f_ heta$,					
asses C ,	Algorithm 3: Complementary Adversarial Cen-				
$\left[0,1 ight]$,	soring $N = \{(x_1, x_2, x_3)\}$				
	Input: Batch $\{(x_i, y_i, s_i)\}_{i=1}^{i}$, Encoder J_{θ} ,				
/,	Adversarial Classifier α_{ψ}				
×t	Output: Mutual Information penalty				
	$\mathcal{L}_{\text{total}} \leftarrow 0$				
	for $i \text{ in } 1 \dots N$ do				
	<pre>// Split latent representation</pre>				
	$(z_i^1, z_i^2) \leftarrow f_{\theta}(x_i)$				
	// Predict subj from each half				
	$q_{\psi}(s_i z_i^1, y_i) \leftarrow \alpha_{\psi}(z_i^1, y_i)$				
	$q_{\psi}(s_i z_i^2,y_i) \leftarrow lpha_{\psi}(z_i^2,y_i)$				
	add $\mathcal{L}_{ ext{CE}}(q_\psi(s_i z_i^1),s_i)$ to $\mathcal{L}_{ ext{total}}$				
p(z s,y)	subtract $\mathcal{L}_{ ext{CE}}(q_{\psi}(s_i z_i^2),s_i)$ from $\mathcal{L}_{ ext{total}}$				
	return $\mathcal{L}_{ ext{total}}$				
s,y) /					

Figure 2: Subject transfer balanced accuracy. Left: Test score from each CV fold, black line indicates mean. Right: Accuracy vs test subject, sorted by baseline performance. Color coding matches for left and right.

	Table 3	Table 3: BEETL Task 1 Results: Sleep Stage Classification			
Competition Stage		Censoring Method	Score (gap to competitor)		
	Leaderboard Testing	Baseline	68.22 (-3.92)		
	Leaderboard Testing	Marginal Adv	67.65 (-4.49)		
	Leaderboard Testing	Marginal PairMMD	65.68 (-6.46)		
	Leaderboard Testing	Marginal MIGE	66.81 (-5.33)		
	Final Testing	Baseline	68.69 (+0.03)		
	Final Testing	Conditional MIGE	67.23 (-1.43)		
	Final Testing	Complementary BEGAN Disc	68.41 (-0.25)		
Final Testing		Conditional MMD	69.23 (+0.57)		

• We evaluate our approach on diverse neurophysiological datasets: EEG Rapid Serial Visual