
5. Results
We found that the proposed methodology, which enables the use of discriminative classifiers, led to:
❖ improvements in both ITR and balanced accuracy. 
❖ Specifically, all discriminative models outperformed the baseline generative models in both 

balanced accuracy and ITR.
❖ The greatest benefit was observed when using discriminative neural network models to 

perform updates.

In Table 1, we show the balanced accuracy and ITR of each model. In Figure 2, we show the ITR of 
various models as a function of the number of trainable parameters, to show that the proposed 
method offers a strong benefit for both large and small models. 

4. Experiments
We evaluate model performance using balanced accuracy and information transfer rate (ITR):

 
Balanced accuracy is the average of accuracy on each class, and is computed using the entire test 
set. To estimate ITR, we follow the simulated typing procedure in Algorithm 1, also described below.

To type one symbol:
- Start with a uniform alphabet prior.
- Select an arbitrary target symbol.
- Repeatedly:

- Sample K query symbols according 
to their current estimated probabilities.

- For each symbol, fetch a random EEG 
trial from the test dataset. If the symbol 
matches the target, fetch a target trial. 
Otherwise fetch a non-target trial.

- Feed these sampled EEG trials to the
model, and perform recursive updates.

- If a symbol exceeds the decision 
threshold, type it and break. After N 
repetitions without success, give up.

This procedure is repeated for T symbols

Finally, we compute an ITR based on the size
of the alphabet, the number of symbols
attempted, and the number of symbols that
were correctly typed.

Note that to evaluate balanced accuracy of generative models, we must convert their likelihood 
output 𝑝(𝑒|𝑙) into a label posterior 𝑝(𝑙|𝑒) using Bayes' rule. This requires choosing a prior over labels; 
we consider both a uniform prior (50:50) and an empirical prior (the class fraction observed in the 
training set).

2. Recursive Bayesian Update
The main task in RSVP typing is to update our posterior estimate for the 
alphabet. In the 𝑘th symbol of the 𝑁th query, let our displayed query symbol 𝑞 
be some particular symbol 𝛼; let 𝛽 be any other symbol. We collect the 
corresponding EEG response 𝑒, apply our pre-trained classifier to estimate 
the label probabilities  𝑝(𝑙|𝑒), compute a label prior 𝑝(𝑙), and then we can 
apply our recursive update rule. Let 𝑸 be all previous query symbols, and 𝑬
be all previous EEG responses.

We derive our update rule; 𝝅 represents a normalized posterior, and 𝛾 
represents an unnormalized posterior. We begin with Baye's rule, including 
all current and previous observations, and apply conditional independences 
to describe the presented symbol 𝛼:

Next, we observe a recursion, and introduce the binary label 𝑙 :

An analogous derivation for any other symbol 𝛽 gives a similar recursion:

After computing 𝛾 for all symbols, the final step is to normalize the alphabet:
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1. Probabilistic Graphical Model

𝜏   -  Previously typed text (known).
𝐷  -  Subject's target symbol (unknown).
𝑞   -  Query symbols we present to subject.
𝑒   -  EEG evidence we measure during query.
𝐾  -  Each query contains K symbols.
𝑁  -  To type one symbol, we allow ourselves at most N queries.

RSVP Typing Procedure:
1. To type a symbol, we begin by examining the previously typed text 𝜏, giving us a prior probability 

distribution over the alphabet. 
2. The user's target symbol 𝐷 depends only on what they want to type and what has been typed so 

far (e.g. imagine that 𝜏 = 'PIZZ' and 𝐷 = 'A'). 
3. Before each query, we sample 𝐾 query symbols 𝑞1

 thru 𝑞𝐾 according to their current probability. 
4. We present each query symbol, and measure the corresponding EEG responses 𝑒1 thru 𝑒𝐾. 
5. After updating our symbol probabilities, we can repeat the process for the next query.
6. If any symbol passes a decision threshold, it is typed. If we perform 𝑁 queries without passing the 

threshold, we simply type the current highest probability symbol.

Modeling assumptions:
- EEG responses are binary: "target" and "non-target".
- EEG responses are conditionally independent, given the queried symbol: each response 

depends only on the current query symbol and the desired symbol.

Goal
We seek to improve methods for communicating using non-invasive EEG. 
❖ We focus on Rapid serial visual presentation (RSVP) paradigm, in which a subject thinks of a 

target symbol, then we query them with a series of quickly flashed possible symbols while 
measuring their EEG responses, and we try to update the estimated probability of each symbol.

❖ We design a recursive Bayesian update that uses discriminative (classifier) models.
❖ Discriminative models are generally easier to train when compared to generative models.
❖ Our method enables the use of new families of EEG signal models for the RSVP typing task.

Key Results
❖ We design an effective typing task simulator using a large RSVP benchmark dataset.
❖ The typing simulator enables error metrics that encompass the whole typing task such as 

information transfer rate (ITR) for candidate models.
❖ The proposed methodology led to higher ITR and balanced accuracy when compared with 

benchmark generative models, even when using small discriminative models.
❖ Among discriminative models, 1D and 2D CNNs led to highest ITR and balanced accuracy.
❖ To calculate balanced accuracy of generative models, we used Bayes Theorem with uniform or 

empirical priors to compute the posterior over labels.

3. Dataset
We use the RSVP Benchmark Dataset from Zhang et al, 2020 
(https://doi.org/10.3389/fnins.2020.568000). This dataset contains 64 
subjects and a total of over 1M binary EEG trials.

Preprocessing: Data is pre-processed using a notch filter for AC line noise 
(50 Hz), a bandpass filter (1-20 Hz), downsampled in time by 2x, and then 
segmented into trials containing 500ms of data beginning at each stimulus 
onset.

Data-split: In all experiments, data is pooled across subjects. 80% of each 
subject's data is used for train, and 20% for test. We repeat all experiments 
using 5 random splits of the dataset.
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