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Introduction – Bias – Variance Trade Off



Introduction

• Classical machine learning looks for the “sweet spot” where training risk is low 
but not at the cost of test risk (bias-variance trade off)

• However, modern methods like neural networks are often designed to have little 
to no training risk and are still accurate on test data

• This is due to the fact that the function class capacity is increased well beyond 
the point of reaching zero training risk, functionally extending beyond the 
traditional U shaped curve



Introduction – Double Descent



Random Fourier Features



Random ReLU Features



Neural Network

Single hidden layer of varying size, e.g.:



Decision Trees and Ensemble Methods

• The double descent curve can be seen 
in more classical machine learning 
methods as well

• By including multiple trees such as in 
random forests the method is 
effectively extended beyond the 
interpolation point



Decision Trees and Ensemble Methods



Activity 1: Decision Trees 

Consider a problem with: 104 labeled training items. 

Given the following 4 possible random forest models, which one do we expect contains the optimal 
model? (Optimal = lowest expected test error)? 

How about the least optimal model?

A) 5 x 103 max leaves, one tree
B) 104 max leaves, one tree
C) 104 max leaves per tree, two trees
D) 5 x 103 max leaves per tree, 10 trees



Activity 2: Choose the ideal RFF model

Consider a regression problem with: ~108 labeled training items. 

Which of the following Random Fourier Features models do you think will perform best (best = 
lowest expected test error)? How about worst? 

(Recall that N is the number of fixed random vectors we use to produce features)

A) N = ~7.2 x 103

B) N = ~4.5 x 103 
C) N = ~1.8 x 105 
D) N = ~3.6 x 108 



Conclusion

● Historical Absence
○ Regularization prevents interpolation
○ Interpolation happens in a narrow range of settings for NN
○ RFF models have traditionally been used with N ≪ n for better run time 

so models beyond the interpolation threshold were not considered
● Inductive bias

○ Occam’s Razor, the smoothest model that fits the data is likely to 
generalize best

● Practical Considerations
○ Larger models may be easier to optimize with SGD as well

● Still need precise definitions of model complexity, esp. for NN
○ We can think about # parameters, # effective parameters, VC dimension



TL;DR
● We saw the bias-variance tradeoff, aka the underfit-overfit tradeoff
● Previously, ML theory told us:

○ There is a “sweet spot” of model complexity, where we will have the best possible 
performance on test data.

○ Achieving perfect accuracy on your training data is probably a bad idea because you are likely 
to be overfitting

● Nonetheless, experimenters discovered that very large models can achieve 
perfect training accuracy and still do very well on test data.

● This paper tells us how to reconcile this phenomenon by moving model 
complexity beyond the interpolation threshold


