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Introduction — Bias — Variance Trade Off
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Introduction

* Classical machine learning looks for the “sweet spot” where training risk is low
but not at the cost of test risk (bias-variance trade off)

* However, modern methods like neural networks are often designed to have little
to no training risk and are still accurate on test data

* This is due to the fact that the function class capacity is increased well beyond
the point of reaching zero training risk, functionally extending beyond the
traditional U shaped curve
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Introduction — Double Descent
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Random Fourier Features
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Random RelLU Features
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Neural Network
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Decision Trees and Ensemble Methods

* The double descent curve can be seen
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Decision Trees and Ensemble Methods
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SVHN (n = 10*,10 classes)
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Activity 1: Decision Trees

Consider a problem with: 10* labeled training items.

Given the following 4 possible random forest models, which one do we expect contains the optimal
model? (Optimal = lowest expected test error)?

How about the least optimal model?

A) 5x10° max leaves, one tree

B) 10* max leaves, one tree

C) 10* max leaves per tree, two trees
D) 5 x 10° max leaves per tree, 10 trees



Activity 2: Choose the ideal RFF model

Consider a regression problem with: ~108 labeled training items.

Which of the following Random Fourier Features models do you think will perform best (best =
lowest expected test error)? How about worst?

(Recall that N is the number of fixed random vectors we use to produce features)

A) N=-~72x10
B) N=~45x10°
C) N=~1.8x105
D) N=~36x10°



Conclusion

Historical Absence
o Regularization prevents interpolation
o Interpolation happens in a narrow range of settings for NN
o RFF models have traditionally been used with N < n for better run time
so models beyond the interpolation threshold were not considered
Inductive bias
o Occam’s Razor, the smoothest model that fits the data is likely to
generalize best
Practical Considerations
o Larger models may be easier to optimize with SGD as well
Still need precise definitions of model complexity, esp. for NN
o We can think about # parameters, # effective parameters, VC dimension



TL;DR

We saw the bias-variance tradeoff, aka the underfit-overfit tradeoff
Previously, ML theory told us:

o There is a “sweet spot” of model complexity, where we will have the best possible
performance on test data.

o Achieving perfect accuracy on your training data is probably a bad idea because you are likely
to be overfitting

Nonetheless, experimenters discovered that very large models can achieve
perfect training accuracy and still do very well on test data.

This paper tells us how to reconcile this phenomenon by moving model
complexity beyond the interpolation threshold



