Improved protein structure
prediction using potentials from
deep learning

Andrew Vy Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin,
Augustin Zidek, Alexander W. R. Nelson, Alex Bridgland, Hugo Penedones, Stig Petersen, Karen Simonyan,
Steve Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray Kavukcuoglu & Demis Hassabis

NOTE: CASP14 (2020) results not published - this is CASP13 (2018)



Background 1 of 2: Proteins



Recall: DNA — RNA — Protein

Regulatory sequence Regulatory sequence

r A ) f_H
Upstream operator Promotor S'UTR Protein coding region / ORF 3'UTR Downstream operator
I_H r A v+v A V_H I_%
Enhancer Enhancer
/silencer Proximal Core RBS Start Exon Intron Stop Terminator /silencer
I 1 1
DNA 1 I 1 I

Transcription

vawremiva | )1

_— e - oy,

Splicing

Translation

Protein

o

1
!
!
- 1

"Folded" Protein

Brief Intro to Genetics and Bioinformatics



https://docs.google.com/document/d/1PxReV3MjzRqIrlmyQWQKDVGpXHgBtir8oVuGHtdkEf0/

Recall: DNA — RNA — Protein

Regulatory sequence Regulatory sequence

r A ) f_H
Upstream operator Promotor S'UTR Protein coding region / ORF 3'UTR Downstream operator
I_H r A v+v A V_H I_%
Enhancer Enhancer
/silencer Proximal Core RBS Start Exon Intron Stop Terminator /silencer
I 1 1
DNA 1 I 1 I

Transcription

vawremiva | )1

_— e - oy,

Splicing

Translation

Protein

o

|
|
'I "Folded" Cow

- em - == -

"Folded" Protein

Brief Intro to Genetics and Bioinformatics



https://docs.google.com/document/d/1PxReV3MjzRqIrlmyQWQKDVGpXHgBtir8oVuGHtdkEf0/

Multiple Sequence Alignment

Enhancer Enhancer

/silencer Proximal Core RBS Start Exon Intron Stop Terminator /silencer

o T -t
Q5E940_BOVIN ——————————— MPREDRATWKSNYFLKIT LDD KCFIVER Vj K I N--PAL 16
RLAO_HUMHN ——————————— MPREDRATWKSNYFLKIT LDD KCFIV@B ¥YGSK I N--PAL 76
RLA0 MOUSE ----—-—-—-—-—--—-— MPREDRATWKSNYFLKIT LDD KCFIV@R V: K I N--PAL 76
RLEO_RBT ——————————— MPREDRATWKSNYFLKIT LDD KCFIV\ V* K I N--PAL 16
RLBO_CHICK ——————————— MPREDRATWKSNYFMKIT LDD KCFVV? VL K I N--PAL 16
RLAO_RBNSY ——————————— MPREDRATWKSNYFLKIT LDD KCFIVg: Vé K I ﬁ N--SAL 76
QTZUG3_BRRRE ——————————— MPREDRATWKSNYFLKIT LDD KCFIV; Vi K I % N--PAL 16
RLAO_ICTPU ——————————— MPREDRATWKSNYFLKIT LND KCFIV@R V; K I G N--PAL 76
RLAO DROME ----------- MVRENKAAWKAQ YFIKVVELFDEFPKCFIVGADNVESK I N--PQL 76

1) Predict gene structure (E.g. using known start sequences, splice sequences, etc). Now we
have linear AA sequence of 1 organism.



Multiple Sequence Alignment

Enhancer Enhancer
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1) Predict gene structure (E.g. using known start sequences, splice sequences, etc). Now we
have linear AA sequence of 1 organism.

2) Find substring matches across AA sequence of multiple organisms. ("homologous regions")



Multiple Sequence Alignment

Enhancer Enhancer
/silencer Proximal Core RBS Start Exon Intron Stop Terminator /silencer
o T -t
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RLBO:DROME ——————————— MYRENKAAWKAQYFIKYY I N--PQL 76

1) Predict gene structure (E.g. using known start sequences, splice sequences, etc). Now we
have linear AA sequence of 1 organism.

2) Find substring matches across AA sequence of multiple organisms. ("homologous regions")

3) Make deductions, such as:
a) If we know the structure of one, we can guess structure of its matches.
b) If aregion is highly conserved, except two positions whose changes are correlated, those positions may be in
contact.
Potts Hamiltonian models of protein co-variation, free energy landscapes, and evolutionary fithess



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869684/

Amino Acid Structure

Side chains determine chemical properties
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Describing Protein Structure: Phi-Psi Angles

Torsion Angles (aka Phi-Psi Angles) - http://bioinformatics.org/molvis/phipsi/

- Looking along each bond of the protein backbone, we can describe a dihedral
angle. (Considering 4 atoms at a time).

- There are 2 backbone bonds inside each AA, and then 1 peptide bond linking to
the next AA.
- Thus there are actually 3 dihedral angles to consider, but the peptide bond's
dihedral angle ("Omega") is constrained by electron structure to be flat


http://bioinformatics.org/molvis/phipsi/

Describing Protein Structure: Phi-Psi Angles

Changes dihedral
angle of this bond
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Experimental Methods for Finding Protein Structure

X-ray crystallography - requires crystallizing a protein (very hard, sometimes
impossible, may alter protein shape, will only capture a single conformation)

Protein NMR - generate distance, angle, and orientation constraints using NMR

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic
field (in the near field(']) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process

Cryo Electron Microscopy - 2017 nobel prize in chemistry! Proteins in solution,
even in motion... but lower resolution and not yet common:

As of October 27, 2020 X-ray crystallography has been used to image 150494 biological samples and is the dominant technique in biological microscopy, with
Cryo-EM far behind at just 6016.[16]

According to Proteopedia, the median resolution achieved by X-ray crystallography (as of May 19, 2019) on the Protein Data Bank is 2.05 A 2% and the highest
resolution achieved on record (as of October 27, 2020) is 0.48 A.[23] As of 2020, the majority of the protein structures determined by Cryo-EM are at a lower
resolution of 3—4 A.[24] However, the best Cryo-EM resolutions are approaching 1.5 A,[25] making it a fair competitor in resolution in some cases.



Background 2 of 2: CASP Competition



CASP - Critical Assessment of Structure Prediction

- Experimentalists submit experimental structures from upcoming publications,
competitors predict structure from sequence.

https://predictioncenter.org/casp14/



https://predictioncenter.org/casp14/#call

CASP - Modeling Tasks

Template-based Modeling (TBM)

- Homologous protein domains (templates) can be used to guide prediction - we can find
regions conserved across evolution and use their known structure in other contexts

- Free Modeling (FM)

- Contact Prediction
- Two residues contact when predicted distance between beta carbons < threshold

- Biological Relevance

- Others



AlphaFold1



Extended Data Fig. 1 (Workflow)
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Fig. 2 (Workflow)

06
& b 05
uence e
ai?i MSA Deep neural Distance and torsion Gradient descent on 8 g':
P network distribution predictions protein-specific potential = o
0]
Noisy restarts
I : 164 binsdeep o 102 108
: » 1 v Cc Iteration
I o !
v .g i
& :
=
o 1
: \
@ @ I 0.8 80
g § : 8.2 i /"‘A'/#w
2 ® _
@© a 1 L . /""
L I 8 0.5 —TM
= ~ V § 041 Ll | S
5 X = = 0.3 e
a = e 02
0.1
g 7 : 0 T
] = ; 0
(&) i
5 - -
g i 3
o [ Elda a0l =
(@) Vi -
'; 220 residual convolution blocks N\ [ |
ks -
o Nat. 0.1110
g . . . _1
[ Gradient descent steps Prediction «

Fig.2|Thefolding processillustrated for CASP13 target T0986s2. CASP
target T0986s2,L =155, PDB: 6N9V. a, Steps of structure prediction.b, The
neural network predicts the entire L x L distogram based on MSA features,

structure prediction probabilities of the network and the uncertainty in
torsion angle predictions (as k' of the von Mises distributions fitted to the
predictions for ¢ and ¢). While each step of gradient descent greedily lowers

accumulating separate predictions for 64 x 64-residue regions. ¢, Oneiteration
ofgradient descent (1,200 steps) isshown, with the TM score and root mean
squaredeviation (r.m.s.d.) plotted against step number with five snapshots of
the structure. The secondary structure (from SST*) is also shown (helix inblue,
strand inred) along with the native secondary structure (Nat.), the secondary

the potential, large global conformation changes are effected, resultingina
well-packed chain.d, The final first submission overlaid on the native structure
(ingrey).e, The average (across thetestset,n=377) TMscore of the lowest-
potential structure against the number of repeats of gradient descent per
target (logscale).



Input Features

The distance prediction neural network was trained with the follow-

ing input features (with the number of features indicated in brackets).

« Number of HHblits alignments (scalar).

*Sequence-length features: 1-hot amino acid type (21 features);
profiles: PSI-BLAST (21 features), HHblits profile (22 features),
non-gapped profile (21 features), HHblits bias, HMM profile (30
features), Potts model bias (22 features); deletion probability (1 fea-
ture); residueindex (integer index of residue number, consecutive
except for multi-segment domains, encoded as 5 least-significant
bits and a scalar).

*Sequence-length-squared features: Potts model parameters
(484 features, fitted with 500 iterations of gradient descent using
Nesterov momentum 0.99, without sequence reweighting);
Frobenius norm (1feature); gap matrix (1feature).



Potential Function

Recall from EBM: p(x) = exp(-E(x) )/ Z

Thus given p(x), we can obtain: E(x) = - log p(x)



Potential Function

Distance potentials The basic distance potential is computed as a sum over all residue pairs of

the likelihood of the inter-residue distances:
Vaistance(X) = — Y log P(di; | §,MSA(S)).
1,J, 1#]
The distance potential with a reference state becomes:
Vaistance(X) = — Y log P(dy; | S, MSA(S)) — log P(dj; | length, d,p).
1,3, 1#£]
The torsions are modelled with a von Mises distribution for each residue:

‘/l.()rsi()n(qba w) = — Z l()g pVOllNﬁSES(gbi) ?f/’v | S? MSA(S))

The total potential that we optimise is thus:

V'Lot.al((pa 7/)) == ‘/distunce(G(d)a w)) + ‘/torsion((pa Ilyb) -+ ‘/;core2_smooth(G(¢a ’lp))

(1)

(2)

3)

4)


https://www.nature.com/articles/s41586-019-1923-7%20#Sec18

Distograms

D, = pred_distance(residue,

(bright means close)

https://github.com/dellacortelab/prospr
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https://github.com/dellacortelab/prospr

Fig. 1 (Compare to Other Methods)
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Fig.1| The performance of AlphaFold inthe CASP13 assessment.a, Number
of FM (FM + FM/TBM) domains predicted for agiven TM-score threshold for
AlphaFold and the other 97 groups. b, For the six new folds identified by the
CASP13 assessors, the TM score of AlphaFold was compared with the other
groups, together with the native structures. The structure of T1017s2-D1is not
available for publication. ¢, Precisions for long-range contact predictionin

CASP13forthe most probableL, /2 or L/5contacts, where L isthelength of the
domain. Thedistance distributions used by AlphaFold in CASP13, thresholded
tocontact predictions, are compared with the submissions by the two best-
ranked contact prediction methodsin CASP13: 498 (RaptorX-Contact?®) and
032 (TripletRes®) on ‘allgroups’ targets, with updated domain definitions for
T0953s2.
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a-d, CASPtarget TO955,L =41,PDB5W9F. a, Native structure showing
distances under 8 A from the Cgof residue 29.b, ¢, Native inter-residue
distances (b) and the mode of the distance predictions (c), highlighting residue
29.d, The predicted probability distributions for distances of residue 29 toall
otherresidues. The bin corresponding to the native distance is highlighted in
red,8 Aisdrawninblack. The distributions of the true contacts are plottedin
green, non-contactsinblue.e,f, CASP target T0990, L =552, PDB 6N9V.

Fig. 3 (Compare to Ground Truth and Uncertainty)

100

1 2 3 r 5
102 - ‘ h
10° 55 7 B 9 10
PRAN PSP PP
7]
§ ) 10 12 13 14 15
3 § 102 .
> 9 10° 176 17 18 19 20
= 102
£ 1013 22 23 24 25
Toib i b LA lA
o 10°35 27 3 3
a
ol (8 0 0 Th
10° 15 33 34 35 36
& LA JA‘L‘ JA
10° 57 38 39 0 1
" L
481216 4 81216 4 81216 4 8 1216 4 8 1216
Distance (A)
f < 20-
B 15
I
§ 101
o 5
B o (KEXE:
55 -
§—10-
151
_20 . . . . -
1 2 3 4 5 6
o prediction (A)

e, The mode of the predicted distance plotted against the true distance for all
residue pairs with distances <22 A, excluding distributions withs.d.>3.5A
(n=28,678). Dataare mean +s.d. calculated for 1A bins. f, The error of the mode
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pairswith native distances >22A (n=61,872). Dataare mean +s.d. are shown for
0.25Abins. The true distance matrix and distogram for T0990 are shownin
Extended DataFig.2b,c.



Fig. 4 (Ablation of Terms in Potential Function)

a b e®e +Rosetta relax A 44 No torsions
«*« Testr=0.72 »—< Downsample *»* % No reference
«*« CASP13r=0.78 vvv No score2_smooth — No distogram
1.0
== ® 05 ‘// 0.650 T
0.8 - b . 0.645 \ y
- . 0.5 0.640 \ »
. 0.635 5
0.630 T T
0.6 1. 0.4 -
(0] . . (0]
= ; = 48 51
(6] (6]
I ' S 03-
Z 04 - . ¥ =
-7 - 0.2 -
0.2 P
i 0.1
0 T T T T T T T 0 T I T T T
0 10 20 30 40 50 60 70 2 3 6 12 24 51
Distogram IDDT,, Number of bins (log scale)
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(n=500:5decoys for all domains, excluding T0999) and test (n=377) datasets.



Editorializing



Douglas Hofstadter's "Location of Meaning"

Hot take: Protein folding is an ill-posed problem.

In Godel, Escher, Bach, Hofstadter asks: Can an alien who discovers a
phonograph record space can ever hope to hear the music it contains?

- No; some of the information is contained in the record player!



Protein Folding in Biology

Proteins function by moving, changing conformation, associating/dis-associating
with partners. (They have multiple structures)
See Proteins that switch folds

Folding occurs in a 4D biochemical context, aided by chaperone proteins, in
response to ligands/pH/solute concentrations, etc.

So structure is mostly but not fully determined by linear sequence. E.g. see

Protein Folding and Processing - The Cell - NCBI Bookshelf
Molecular chaperone functions in protein folding and proteostasis



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928869/
https://www.ncbi.nlm.nih.gov/books/NBK9843/
https://pubmed.ncbi.nlm.nih.gov/23746257

ML Loves lll Posed Problems

Input (a) Shift-net (b) Contextual Attention (c) Our Result (d) Ground Truth (e)

https://arxiv.org/pdf/1905.12384v3.pdf



https://arxiv.org/pdf/1905.12384v3.pdf

ML Loves lll Posed Problems

-

https://i.redd.it/'yygdsodyvwj61.qif



https://i.redd.it/yygdsodyvwj61.gif

Links and Appendix



Open-Souree

https://qgithub.com/deepmind/deepmind-research/tree/master/alphafold casp13

"""This code can't be used to predict structure of an arbitrary protein sequence. It can be used to predict
structure only on the CASP13 dataset (links below). The feature generation code is tightly coupled to our
internal infrastructure as well as external tools, hence we are unable to open-source it."""


https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13

Open Source

ProSPr: Democratized Implementation of Alphafold Protein Distance Prediction
Network - https://www.biorxiv.org/content/10.1101/830273v2

- https://github.com/dellacortelab/prospr

"""This repository currently contains a democratized implementation of the AlphaFold1 distance
pred|ct|0n network.""

AIlSO: https://github.com/Urinx/alphafold pytorch



https://www.biorxiv.org/content/10.1101/830273v2
https://github.com/dellacortelab/prospr
https://github.com/Urinx/alphafold_pytorch

AlphaFold2 (at CASP14)

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

"""t uses approximately 16_TPUv3s (which is 128 TPUv3 cores or roughly
equivalent to ~100-200 GPUs) run over a few weeks, a relatively modest

amount of compute in the context of most large state-of-the-art models used in
machine learning today. "™

Deepmind Slides: nhttps://predictioncenter.ora/casp14/doc/presentations/2020_12_01_TS_predictor_AlphaFold2.pdf

Fabian Fuchs writeup: AlphaFold 2 & Equivariance (Good find by Robin!)



https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://cloud.google.com/tpu/docs/types-zones
https://predictioncenter.org/casp14/doc/presentations/2020_12_01_TS_predictor_AlphaFold2.pdf
https://fabianfuchsml.github.io/alphafold2/

