Inference in Network-based Epidemiological Simulations with Probabilistic Programming

Niklas Smedemark-Margulies¹, Robin Walters¹, Heiko Zimmermann¹, Lucas Laird, Neela Kaushik, Rajmonda Caceres and Jan-Willem van de Meent

AI for Public Health ICLR 2021 Workshop

Introduction

Designing interventions for pandemics requires a realistic simulator

- Complex enough to fit real-world dynamics
- Accurately fit to real-world data
- Hard to do both at once.
- Our disease model: Network-SEIR
 - Mobility network derived from cell phone data
 - Agent-based transmission

Parameter estimation by probabilistic programming

- Black-box variational inference
- Disease parameters, initial exposure patterns

➢ Better fit to real data

- Model multi-peak dynamics
- Replicates actual statistics for different regions

Mobility Networks as Stochastic Block Models

- Smartphone location data at points-of-interests (POI)¹
- Each phone mapped to "home" Census Block Group (CBG)
- Simulate geographic contact patterns using DCSBM²
 - Nodes are individuals; stochastic blocks are CBGs
 - **POI** interaction probability based on shared **POI** visit counts
 - Weight of interactions captures the duration of co-location

² DCSBM: Degree Corrected Stochastic Block Model: https://en.wikipedia.org/wiki/Stochastic_block_model

➤ Compartmental models

$$\frac{dS}{dt} = -\frac{\beta SI}{N} \qquad \frac{dE}{dt} = \frac{\beta SI}{N} - \sigma E$$

- Our approach: Network-based SEIR Model
 - Poisson modeling of exposures:

$$P(v \in E_{t+1} | v \in S_t, u \in E_t) = 1 - \exp(-W_{uv}\beta_E^t)$$

• Model local network effects

$$P(v \in E_{t+1} | v \in S_t) = 1 - \exp\left(-\left[\sum_{u \in N_E(v)} W_{uv} \beta_E^t + \sum_{u \in N_I(v)} W_{uv} \beta_I^t\right]\right)$$
$$\approx \min\left\{1, \left[\sum_{u \in N_E(v)} W_{uv} \beta_E^t + \sum_{u \in N_I(v)} W_{uv} \beta_I^t\right]\right\}$$

Function f_{SEIR} (*G*, $\alpha^{1:C}$, $\{\beta_E^{t_1} \dots \beta_E^{t_K}\}$, $\{\beta_I^{t_1} \dots \beta_I^{t_K}\}$, γ , λ , *T*):

 $\begin{array}{l} \textbf{Function } f_{\text{SEIR}} \left(G, \, \alpha^{1:C}, \, \{ \beta_E^{t_1} \dots \beta_E^{t_K} \}, \, \{ \beta_I^{t_1} \dots \beta_I^{t_K} \}, \gamma, \, \lambda, \, T \right) \texttt{:} \\ \textbf{for } c \leftarrow 1 \textbf{ to } C \textbf{ do} & // \textbf{ Initial Exposure} \\ \textbf{for } v \in \mathcal{V}^c \textbf{ do if } \text{Unif}(0,1) < \alpha^c \textbf{ then } v \rightarrow E^1 \textbf{ else } v \rightarrow S^1 \end{array}$

 $\begin{aligned} & \textbf{Function } f_{\text{SEIR}} \left(G, \, \alpha^{1:C}, \, \{ \beta_E^{t_1} \dots \beta_E^{t_K} \}, \, \{ \beta_I^{t_1} \dots \beta_I^{t_K} \}, \gamma, \lambda, T \right) \text{:} \\ & \textbf{for } c \leftarrow 1 \textbf{ to } C \textbf{ do } & // \text{ Initial Exposure} \\ & \textbf{for } v \in \mathcal{V}^c \textbf{ do if } \text{Unif}(0,1) < \alpha^c \textbf{ then } v \rightarrow E^1 \textbf{ else } v \rightarrow S^1 \\ & \textbf{for } t \leftarrow 1 \textbf{ to } T-1 \textbf{ do } & // \text{ Simulate T days} \\ & \beta_E^t \leftarrow \text{INTERPOLATE}(\beta_E^{t_1}, \dots, \beta_E^{t_K}) \text{;} \quad \beta_I^t \leftarrow \text{INTERPOLATE}(\beta_I^{t_1}, \dots, \beta_I^{t_K}) \\ & \textbf{for } v \in S_t \textbf{ do } \\ & E_{\text{pressure}} \leftarrow \sum_{u \in N_E^t(v)} W_{uv} \beta_E^t \text{;} \quad I_{\text{pressure}} \leftarrow \sum_{u \in N_I^t(v)} W_{uv} \beta_I^t \\ & \textbf{ if } \text{Unif}(0,1) < (E_{\text{pressure}} + I_{\text{pressure}}) \textbf{ then } v \rightarrow E^{t+1} \end{aligned}$

Function f_{SEIR} (*G*, $\alpha^{1:C}$, { $\beta_E^{t_1} \dots \beta_E^{t_K}$ }, { $\beta_I^{t_1} \dots \beta_I^{t_K}$ }, γ , λ , *T*): for $c \leftarrow 1$ to C do // Initial Exposure for $v \in \mathcal{V}^c$ do if $\operatorname{Unif}(0,1) < \alpha^c$ then $v \to E^1$ else $v \to S^1$ for $t \leftarrow 1$ to T-1 do // Simulate T days $\beta_E^t \leftarrow \text{INTERPOLATE}(\beta_E^{t_1}, \dots, \beta_E^{t_K}); \quad \beta_I^t \leftarrow \text{INTERPOLATE}(\beta_I^{t_1}, \dots, \beta_I^{t_K})$ for $v \in S_t$ do $E_{\text{pressure}} \leftarrow \sum_{u \in N_E^t(v)} W_{uv} \beta_E^t$; $I_{\text{pressure}} \leftarrow \sum_{u \in N_\tau^t(v)} W_{uv} \beta_I^t$ if $\text{Unif}(0,1) < (E_{pressure} + I_{pressure})$ then $v \to E^{t+1}$ for $v \in E^t$ do if $\text{Unif}(0,1) < \gamma$ then $v \to I^{t+1}$ for $v \in I^t$ do if $\text{Unif}(0,1) < \lambda$ then $v \to R^{t+1}$

Function f_{SEIR} (G, $\alpha^{1:C}$, { $\beta_E^{t_1} \dots \beta_E^{t_K}$ }, { $\beta_I^{t_1} \dots \beta_I^{t_K}$ }, γ , λ , T): for $c \leftarrow 1$ to C do // Initial Exposure for $v \in \mathcal{V}^c$ do if $\operatorname{Unif}(0,1) < \alpha^c$ then $v \to E^1$ else $v \to S^1$ for $t \leftarrow 1$ to T-1 do // Simulate T days $\beta_E^t \leftarrow \text{INTERPOLATE}(\beta_E^{t_1}, \dots, \beta_E^{t_K}); \quad \beta_I^t \leftarrow \text{INTERPOLATE}(\beta_I^{t_1}, \dots, \beta_I^{t_K})$ for $v \in S_t$ do $E_{\text{pressure}} \leftarrow \sum_{u \in N_E^t(v)} W_{uv} \beta_E^t$; $I_{\text{pressure}} \leftarrow \sum_{u \in N_\tau^t(v)} W_{uv} \beta_I^t$ if $\text{Unif}(0,1) < (E_{pressure} + I_{pressure})$ then $v \to E^{t+1}$ for $v \in E^t$ do if $\text{Unif}(0,1) < \gamma$ then $v \to I^{t+1}$ for $v \in I^t$ do if $\text{Unif}(0,1) < \lambda$ then $v \to R^{t+1}$ return $(\sum_{t=1}^{j} I^t)_{i=1}^T$ // List of Cumulative Infections

Function f_{SEIR} (G, $\alpha^{1:C}$, $\{\beta_E^{t_1} \dots \beta_E^{t_K}\}$, $\{\beta_I^{t_1} \dots \beta_I^{t_K}\}$, γ , λ , T): for $c \leftarrow 1$ to C do // Initial Exposure for $v \in \mathcal{V}^c$ do if $\operatorname{Unif}(0,1) < \alpha^c$ then $v \to E^1$ else $v \to S^1$ for $t \leftarrow 1$ to T-1 do // Simulate T davs $\beta_E^t \leftarrow \text{INTERPOLATE}(\beta_E^{t_1}, \dots, \beta_E^{t_K}); \quad \beta_I^t \leftarrow \text{INTERPOLATE}(\beta_I^{t_1}, \dots, \beta_I^{t_K})$ for $v \in S_t$ do $E_{\text{pressure}} \leftarrow \sum_{u \in N_E^t(v)} W_{uv} \beta_E^t$; $I_{\text{pressure}} \leftarrow \sum_{u \in N_r^t(v)} W_{uv} \beta_I^t$ if $\text{Unif}(0,1) < (E_{pressure} + I_{pressure})$ then $v \to E^{t+1}$ for $v \in E^t$ do if $\text{Unif}(0,1) < \gamma$ then $v \to I^{t+1}$ for $v \in I^t$ do if $\text{Unif}(0,1) < \lambda$ then $v \to R^{t+1}$ return $(\sum_{t=1}^{j} I^t)_{i=1}^T$ // List of Cumulative Infections

Bayesian Inference

$p(\beta)$ - prior belief about disease parameters

 $p(data | \beta)$ - probability of observed data given disease parameters

Stochastic Variational Inference

> Approximate intractable posterior with variational distribution q_{ϕ}

$$\begin{split} \phi^* &= \arg\min_{\phi} \ \operatorname{KL}(q_{\phi}(\ \cdot\) \mid \underbrace{p(\ \cdot\ \mid data)}_{\text{intractable}}) \\ &= \arg\max_{\phi} \ \mathscr{L}(\phi) \leftarrow \text{tractable surrogate objective (ELBO)} \end{split}$$

Optimization via stochastic gradient ascent

$$\phi_{t+1} \leftarrow \phi_t + \alpha_t \nabla_{\phi} \mathscr{L}(\phi_t)$$

Fit Time-Varying Infection Rates

County	low	high	low-high	high-low	low-high-low	high-low-high
Miami-Dade	0.0052	0.0046	0.0042	0.0051	0.0043	$0.0050 \\ 0.0047$
Los Angeles	0.0037	0.0046	0.0050	0.0044	0.0048	

$$\text{MDAE} \equiv \mathbb{E}_{q_{\phi}(z)} \left[\frac{\|f_{\text{SEIR}}(z) - x\|_{1}}{TN} \right] \approx \frac{1}{N} \frac{1}{ST} \sum_{s} \sum_{t} \left| f_{\text{SEIR}}(z_{s})^{t} - x^{t} \right|$$

Better than Baselines

Disease Model	Fitting Method	LA-MDAE	Miami-Dade-MDAE
Compartmental	CE-EM	0.0251	0.0161
Network	R_t -Analytic	0.0075	0.0086
Network	BBVI	0.0029	0.0053

Fit Different Regions

Middlesex

Los Angeles

Infer Starting Communities

Thank you!

- Paper ID: 36
- Email: <u>smedemark-margulie.n@northeastern.edu</u>
- Acknowledgements:

