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TL;DR

To avoid issues when symmetry is approximate or mis-specified, create a layer as
the sum of two parts: one symmetric part, and one unconstrained part
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Background: Residual Connections



Residual Connections - "ResNet"
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Figure 2. Residual learning: a building block.

Deep Residual Learning for Image Recognition
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_ CVPR_2016_paper.pdf



https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Residual Connections - "Residual RL"
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Fig. 1: We train an agent directly in the real world to solve a model assembly task involving contacts and unstable objects.
An outline of our method, which consists of combining hand-engineered controllers with a residual RL controller, is shown
on the left. Rollouts of residual RL solving the block insertion task are shown on the right. Residual RL is capable of
learning a feedback controller that adapts to variations in the orientations of the standing blocks and successfully completes
the task of inserting a block between them. Videos are available at residualrl.github.io

Residual Reinforcement Learning for Robot Control

https://arxiv.org/pdf/1812.03201.pdf



Residual Connections - "Residual Policy Learning”

learning. Our main idea is to augment arbitrary initial policies
by learning residuals on top of them. Given an initial policy
m: S — A with states s € S and actions a € A C R%, we
learn a residual function fy(s) : S — A so that we have a
residual policy 9 : S — A given by

mo(s) = m(s) + fo(s) -

Observe that Vymy(s) = Vg fo(s), that is, the gradient of
the policy does not depend on the initial policy . We can
therefore use policy gradient methods to learn my even if the
initial policy 7 is not differentiable.

Residual Policy Learning
https://arxiv.org/pdf/1812.06298.pdf



Residual Connections - "Physics-Augmented Learning"
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Figure 1: Compare Physics-informed learning (PIL, left) and physics-augmented learning (PAL,
right). PIL and PAL apply to discriminative and generative properties respectively.

Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning
https://arxiv.org/pdf/2109.13901.pdf


https://arxiv.org/pdf/2109.13901.pdf

Method



Basic Method
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(a) Priors over Equivariant Solutions (b) Structure of RPP Models

Figure 1: Left: RPPs encode an Occam’s razor approach to modeling. Highly flexible models like
MLPs lack the inductive biases to assign high evidence to key datasets, while models with strict
equivariance constraints are not flexible enough to support problems with only approximate symmetry.
Right: The structure of RPPs. Expanding the layers into a sum of the constrained and unconstrained
solutions while setting the prior to favor the constrained solution, leads to the more flexible layer
explaining only the residual of what is already explained by the constrained layer.



Recap on EMLP (Finzi et al 2021)

Equivariant MLLPs EMLPs provide a method for automatically constructing exactly equivariant
layers for any given group and representation by solving a set of constraints. The way in which
the vectors are equivariant is given by a formal specification of the types of the input and output
through defining their representations. Given some input vector space Vj, with representation p;,, and
some output space V,,,,+ with representation p,, the space of all equivariant linear layers mapping
Vin — Vout satisfies

Vg €qG: pout(g)W - me(g)

These solutions to the constraint form a subspace of matrices R™°ut*™i» which can be solved for
and described by a r dimensional orthonormal basis () € R™eut"in X" [ inear layers can then be
parametrized in this equivariant basis. The elements of W can be parametrized vec(W) = Q3 for
B € R" for the linear layer v — W, and symmetric biases can be parametrized similarly.



Defining the Residual Pathway Prior

Define the weight matrixasasum: W = A+ B
Consisting of an equivariant part (A) and an unconstrained part (B)



Defining the Residual Pathway Prior

In the case of Equivariant MLP (EMLP) from Finzi et al 2021, this consists of:

- equivariant weight matrix vec(4) = QB Wwith g~ N(0,021)
(equivalentto A ~ N(0,02QQT))

- unconstrained weight matrix B ~ N(0,021) with 02l = o2QQT + o2PPT

Intotal: A+ B =W ~N(0,(62+402)QQ"T + c2PPT)



Experiments



Experiment: Inertia and Pendulum Datasets
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Figure 2: A comparison of test performance over 10 independent trials using RPP-EMLP and equiva-
lent EMLP and MLP models on the inertia (top) and double pendulum (bottom) datasets in which we
have three varying levels of symmetries. The boxes represent the interquartile range, and the whiskers
the remainder of the distribution. Left: perfect symmetries in which EMLP and the equivariant
components of RPP-EMLP exactly capture the symmetries in the data. Center: approximate symme-
tries in which the perfectly symmetric systems have been modified to include some non-equivariant
components. Right: mis-specified symmetries in which the symmetric components of EMLP and
RPP-EMLP do not reflect the symmetries present in the data.

Datasets from: https://proceedings.mir.press/v139/finzi21a/finzi21a.pdf


https://proceedings.mlr.press/v139/finzi21a/finzi21a.pdf

Experiments: Sampling from Ensemble, and Varying Prior
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Figure 3: Left: Kernel density estimators of log equivariance error across training epochs for 10
independently trained networks. Here the color denotes the dataset these models were trained on.
Treating these samples as a proxy for posterior density, we see that on the non-equivariant Modified
Inertia dataset, the posterior is shifted upward to match the level of equivariance in the data during
training. Right: Test MSE as a function of the weight decay parameters on the equivariant and basic
weights on the modified inertia dataset. We observe that so long as the prior in the basis of equivariant
weights is broad enough, we can achieve low test error with RPPs.



Experiments on Toy Datasets

CIFAR-10 Energy Fertility Pendulum Wine

MLP 37.61+0.56 0.39+0.48 0.049+0.0044 4.65+0.50 0.66 % 0.058
RPP 12.62+£0.34 0.73+0.44 0.060=+0.0097 4.25+0.50 0.69+0.031
Conv 12.03+046 1.34+0.38 0.076 £0.0157 4.63+0.36 0.79+£ 0.092

Table 1: Mean test classification error on CIFAR-10 and MSE on 4 UCI regression tasks, with one
standard deviation errors taken over 10 trials. Similar to Figure[4] we find that whether the constrained
convolutional structure is helpful (CIFAR) or not (UCI), RPP-Conv performs similarly to the model
with the correct level of complexity.



Experiments on Mujoco Toy Problems
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Figure 5: Average reward curve of RPP-SAC and SAC trained on Mujoco locomotion environments
(max average reward attained at each step). Mean and one standard deviation taken over 4 trials
shown in the shaded region. Incorporating approximate symmetries in the environments improves the
efficiency of the model free RL agents.



Discussion and Issues

Main conclusions:

- Overall, a very clever, simple, easily implemented idea!
- The probabillistic interpretation seems possibly weak and maybe obscures the
key idea.
- Was this added after-the-fact to try and make the method seem more
fancy?
Is there even really a probabilistic method here, or just a weighted sum of
two layers, with two different values of weight decay?
- Some experimental details missing from paper (datasets, training scheme,
experiments on "posterior equivariance error")



